福井大学 研究者総覧
工学系部門
工学領域
生物応用化学講座
小西 慶幸
プロフィールへ戻る
日本語
English
論文
(公開件数:62件)
業績選択
所属学協会
共同・受託研究希望テーマ
論文
著書
講演・口頭発表・ポスター等
受賞
科学研究費補助金・厚生科研補助金
表示列選択
10
25
50
100
All
件表示
検索:
No.
タイトル
出版年月
著者
誌名
巻号頁
DOI1
ISSN
eISSN
URL1
出版社・発行元
概要
リポジトリCNRIハンドル
No.
タイトル
出版年月
著者
誌名
巻号頁
DOI1
ISSN
eISSN
URL1
出版社・発行元
概要
リポジトリCNRIハンドル
1
3-Nitrotyrosine shortens axons of non-dopaminergic neurons by inhibiting mitochondrial motility
2024/08/16
Masahiro Hirai, Kohei Suzuki, Yusuke Kassai, Yoshiyuki Konishi
Neurochemistry International
179, 105832
10.1016/j.neuint.2024.105832
2
3-nitrotyrosine shortens axons of a non-dopaminergic neuron by inhibiting mitochondrial motility
2024/05/09
Masahiro Hirai, Kohei Suzuki, Yusuke Kassai, Yoshiyuki Konishi
bioRxiv
2024.05.09.593299
3
Active thermodynamic force driven mitochondrial alignment
2024/04/29
Masashi K. Kajita, Yoshiyuki Konishi, Tetsuhiro S. Hatakeyama
Physical Review Research
6/ 2, L022024
10.1103/PhysRevResearch.6.L022024
4
Black pepper (Piper nigrum) oleoresin has a neuroprotective effect on apoptosis induced by activity deprivation
2023/09/11
Saga Y, Yamanishi A, Matsumoto M, Yoshigoka Y, Zaima N, Konishi Y.
Food Sci. Technol. Res.
5
Tubulin Polyglutamylation by TTLL1 and TTLL7 Regulate Glutamate Concentration in the Mice Brain
2023/05
Ping, Yashuang, Ohata, Kenji, Kikushima, Kenji, Sakamoto, Takumi, Islam, Ariful, Xu, Lili, Zhang, Hengsen, Chen, Bin, Yan, Jing, Eto, Fumihiro, Nakane, Chiho, Takao, Keizo, Miyakawa, Tsuyoshi, Kabashima, Katsuya, Watanabe, Miho, Kahyo, Tomoaki, Yao, Ikuko, Fukuda, Atsuo, Ikegami, Koji, Konishi, Yoshiyuki, Setou, Mitsutoshi
BIOMOLECULES
13/ 5
10.3390/biom13050784
6
Active thermodynamic force driven mitochondrial alignment.
2023/05/09
Kajita KM, Konishi Y, Hatakeyama ST.
arXiv
2305.05553
7
Optic Nerve Injury Enhanced Mitochondrial Fission and Increased Mitochondrial Density without Altering the Uniform Mitochondrial Distribution in the Unmyelinated Axons of Retinal Ganglion Cells in a Mouse Model.
2023/02/22
Tsuji Takahiro,Murase Tomoya,Konishi Yoshiyuki,Inatani Masaru
International journal of molecular sciences
24/ 5
10.3390/ijms24054356
1422-0067
Glaucomatous optic neuropathy (GON), a major cause of blindness, is characterized by the loss of retinal ganglion cells (RGCs) and the degeneration of their axons. Mitochondria are deeply involved in maintaining the health of RGCs and their axons. Therefore, lots of attempts have been made to develop diagnostic tools and therapies targeting mitochondria. Recently, we reported that mitochondria are uniformly distributed in the unmyelinated axons of RGCs, possibly owing to the ATP gradient. Thus, using transgenic mice expressing yellow fluorescent protein targeting mitochondria exclusively in RGCs within the retina, we assessed the alteration of mitochondrial distributions induced by optic nerve crush (ONC) via in vitro flat-mount retinal sections and in vivo fundus images captured with a confocal scanning ophthalmoscope. We observed that the mitochondrial distribution in the unmyelinated axons of survived RGCs after ONC remained uniform, although their density increased. Furthermore, via in vitro analysis, we discovered that the mitochondrial size is attenuated following ONC. These results suggest that ONC induces mitochondrial fission without disrupting the uniform mitochondrial distribution, possibly preventing axonal degeneration and apoptosis. The in vivo visualization system of axonal mitochondria in RGCs may be applicable in the detection of the progression of GON in animal studies and potentially in humans.
8
A model for generating differences in microtubules between axonal branches depending on the distance from terminals.
2023/01/15
Imanaka Chiaki,Shimada Satoshi,Ito Shino,Kamada Marina,Iguchi Tokuichi,Konishi Yoshiyuki
Brain research
1799, 148166
10.1016/j.brainres.2022.148166
1872-6240
3.61
In the remodeling of axonal arbor, the growth and retraction of branches are differentially regulated within a single axon. Although cell-autonomously generated differences in microtubule (MT) turnover are thought to be involved in selective branch regulation, the cellular system whereby neurons generate differences of MTs between axonal branches has not been clarified. Because MT turnover tends to be slower in longer branches compared with neighboring shorter branches, feedback regulation depending on branch length is thought to be involved. In the present study, we generated a model of MT lifetime in axonal terminal branches by adapting a length-dependent model in which parameters for MT dynamics were constant in the arbor. The model predicted that differences in MT lifetime between neighboring branches could be generated depending on the distance from terminals. In addition, the following points were predicted. Firstly, destabilization of MTs throughout the arbor decreased the differences in MT lifetime between branches. Secondly, differences of MT lifetime existed even before MTs entered the branch point. In axonal MTs in primary neurons, treatment with a low concentration of nocodazole significantly decreased the differences of detyrosination (deTyr) and tyrosination (Tyr) of tubulins, indicators of MT turnover. Expansion microscopy of the axonal shaft before the branch point revealed differences in deTyr/Tyr modification on MTs. Our model recapitulates the differences in MT turnover between branches and provides a feedback mechanism for MT regulation that depends on the axonal arbor geometry.
9
Intermitochondrial signaling regulates the uniform distribution of stationary mitochondria in axons.
2022/02/04
Matsumoto Nozomu,Hori Ikuma,Kajita Masashi K,Murase Tomoya,Nakamura Wataru,Tsuji Takahiro,Miyake Seiji,Inatani Masaru,Konishi Yoshiyuki
Molecular and cellular neurosciences
119, 103704
10.1016/j.mcn.2022.103704
1095-9327
In the central nervous system (CNS), many neurons develop axonal arbors that are crucial for information processing. Previous studies have demonstrated that premature axons contain motile and stationary mitochondria, and their balance is important for axonal arborization. However, the mechanisms by which neurons determine the positions of stationary mitochondria as well as their turnover remain to be elucidated. We observed that the distribution of stationary mitochondrial spots along the unmyelinated and nonsynaptic axons is not random but rather relatively uniform both in primary cultured neurons and in tissues. Intriguingly, whereas the positions of each mitochondrial spot changed over time, the overall distribution remained uniform. In addition, local inactivation of mitochondria by KillerRed mediated chromophore-assisted light inactivation (CALI) inhibited the translocation of mitochondrial spots in adjacent axonal regions, suggesting that functional mitochondria enhance the motility of other mitochondria in the vicinity. Signals of ATP:ADP sensor, PercevalHR indicated that the ATP:ADP ratio was relatively high around mitochondria, and treating axons with phosphocreatine (PCr), which supplies ATP, reduced the immobile mitochondria induced by the local mitochondrial inactivation. In a mathematical model, we found that the ATP gradient generated by mitochondria, and ATP dependent regulation of mitochondrial motility could establish uniform mitochondrial distribution. These observations suggest that axons in the CNS possess the system that distributes mitochondria uniformly, and intermitochondrial signaling contribute to the regulation. In addition, our results suggest the possibility that ATP might be one of the molecules mediating the signaling.
10
Neuroprotective effects of aromatic turmerone on activity deprivation-induced apoptosis in cerebellar granule neurons
2020/12
Saga, Yuya, Hatakenaka, Yudai, Matsumoto, Miho, Yoshioka, Yuri, Matsumura, Shinichi, Zaima, Nobuhiro, Konishi, Yoshiyuki
NEUROREPORT
31/ 18, 1302-1307
10.1097/WNR.0000000000001551
0959-4965
11
Arp2/3 Is Required for Axonal Arbor Terminal Retraction
in Cerebellar Granule Neurons
2020/03/31
T Ikeno and Y Konishi
Neurochem J
14/ 1, 32-36
12
チロシン化,脱チロシン化
2018
小西慶幸
生体の科学
49/ 4, 476-477
13
増大特集 タンパク質・核酸の分子修飾 Ⅱ.細胞質/オルガネラでの分子修飾 微小管 チロシン化,脱チロシン化
2018/10/15
小西 慶幸
生体の科学
69/ 5, 476-477
0370-9531
URL
株式会社医学書院
14
Inhibition of glycogen synthase kinase-3 reduces extension of the axonal leading process by destabilizing microtubules in cerebellar granule neurons.
2018/04/11
Inami Y, Omura M, Kubota K, Konishi Y.
Brain Res.
1690, 51-60
15
Differential retraction of axonal arbor terminals mediated by microtubule and kinesin motor
2017/02/17
Ikeno T, Konishi Y
Commun. Integr. Biol.
e1288771
16
Mechanisms of differential branch growth control in the single axonal arbor
2017/01/05
Konishi Y
Forma
32, S25-S28
17
Study of local intracellular signals regulating axonal morphogenesis using a microfluidic device
2016/10/20
Uryu D, Tamaru T, Suzuki A, Sakai R, Konishi Y
Sci. Technol. Adv. Mater.
17/ 1, 691-697
18
Kinesin-1 sorting in axons controls the differential retraction of arbor terminals.
2016/09/15
Seno T, Ikeno T, Mennya K, Kurishita M, Sakae N, Sato M, Takada H, Konishi Y
J Cell Sci.
29, 3499-3510
19
Ttll9-/- mice sperm flagella show shortening of doublet 7, reduction of doublet 5 polyglutamylation and a stall in beating
2016/07/15
Konno A, Ikegami K, Konishi Y, Yang HJ, Abe M, Yamazaki M, Sakimura K, Yao I, Shiba K, Inaba K, Setou M
J Cell Sci.
129, 2757-2766
20
DBZ regulates cortical cell positioning and neurite development by sustaining the anterograde transport of Lis1 and DISC1 through control of Ndel1 dual-phosphorylation
2015/02/18
M.Okamoto, T.Iguchi, T.Hattori, S.Matsuzaki, Y.Koyama, M.Taniguchi, M.Komada, M-J.Xie, H.Yagi, S.Simizu, Y.Konishi, M.Omi, T.Yoshimi, T.Tachibana, S.Fujieda, T.Katayama, A.Ito, S.Hirotsune, M.Tohyama, M.Sato
J. Neurosci.
35/ 7, 2942-2958
10.1523/JNEUROSCI.5029-13.2015.
21
Cellular mechanisms for the axonal pattern formation: Initiation and branch morphogenesis
2014/09/24
Y.Konishi (corresponding author)
Forma
29, 51-54
コレスポンディングオーサー
22
A low-density culture method of cerebellar granule neurons with paracrine support applicable for the study of neuronal morphogenesis
2013
K Kubota, T Seno, Y Konishi
Brain Res.
1539, 15-23
23
Axonal gradient of arachidonic acid-containing phosphatidylcholine and its dependence on actin dynamics
2012
Yang HJ, Sugiura Y, Ikegami K, Konishi Y, Setou M
J Biol Chem.
287/ 8, 5290-5300
24
神経細胞の形づくりの機構-分子細胞生物学的視点から
2012/06/01
小西 慶幸
形の科学会誌 = Bulletin of the Society for Science on Form
27/ 1, 51
09156089
URL
25
質量顕微鏡で生命の謎を解く
2010
大畑健次, 小西 慶幸, 瀬藤光利
生物物理
52/ 2
26
神経細胞の形態制御に関わる細胞内在的分子機構
2010
小西 慶幸
神経化学
49/ 4, 925-932
27
Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs)
2010
Kimura Y, Kurabe N, Ikegami K, Tsutsumi K, Konishi Y, Kaplan OI, Kunitomo H, Iino Y, Blacque OE, Setou M
J Biol Chem
285, 22936-22941
28
Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain
2010
Koizumi S, Yamamoto S, Hayasaka T, Konishi Y, Yamaguchi-Okada M, Goto-Inoue N, Sugiura Y, Setou M, Namba H
Neuroscience
168, 219-225
機関リポジトリ
29
Developments and applications of mass microscopy.
2010/03/01
Setou Mitsutoshi,Shrivas Kamlesh,Sroyraya Morakot,Yang Hyunjeong,Sugiura Yuki,Moribe Junji,Kondo Akira,Tsutsumi Koji,Kimura Yoshishige,Kurabe Nobuya,Hayasaka Takahiro,Goto-Inoue Naoko,Zaima Nobuhiro,Ikegami Koji,Sobhon Prasert,Konishi Yoshiyuki
Medical molecular morphology
43/ 1, 1-5
10.1007/s00795-009-0489-0
1860-1499
We have developed a mass microscopy technique, i.e., a microscope combined with high-resolution matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), which is a powerful tool for investigating the spatial distribution of biomolecules without any time-consuming extraction, purification, and separation procedures for biological tissue sections. Mass microscopy provides clear images about the distribution of hundreds of biomolecules in a single measurement and also helps in understanding the cellular profile of the biological system. The sample preparation and the spatial resolution and speed of the technique are all important steps that affect the identification of biomolecules in mass microscopy. In this Award Lecture Review, we focus on some of the recent developments in clinical applications to show how mass microscopy can be employed to assess medical molecular morphology.
30
神経細胞の中にある交通標識
2009
小西 慶幸
神経科学ニュース
176/ 4
31
Tubulin Tyrosination Navigates the Kinesin-1 Motor Domain to Axons
2009
Konishi Y, Setou M
Nat Neurosci.
12, 559-567
32
Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry
2009
Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M
J Lipid Res
50, 1776-1788
33
TGFbeta-Smad2 signaling regulates the Cdh1-APC/SnoN pathway of axonal morphogenesis
2008
Stegmuller J, Huynh MA, Yuan Z, Konishi Y, Bonni A
J Neurosci.
28, 1961-1969
34
Enhancement of Trk Signaling Pathways by the Cholestane Amide Conjugate MCC-257
2008
Yamada MK, Konishi Y, Kakinoki B, Ikegami K, Setou M
J Pharmacol Sci.
108, 131-134
35
Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons
2008
Yuan Z, Becker EB, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer EM, Bonni A
Science
319, 1665-1668
機関リポジトリ
36
Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS) facilitates surface expression of GluR2-containing AMPA receptors
2008
Yang H, Takagi H, Konishi Y, Ageta H, Ikegami K, Yao I, Sato S, Hatanaka K, Inokuchi K, Seog DH, Setou M
PLoS ONE
3, e2809
機関リポジトリ
37
Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus
2008
Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M
PLoS ONE
3, e3232
機関リポジトリ
38
分子イメージングを用いた先端研究とその実用化
2008/11
瀬藤 光利, 松本 峰男, 小西 慶幸
Bio industry = バイオインダストリー
25/ 11, 110-116
09106545
URL
東京 : シーエムシー出版
39
質量顕微鏡の開発--組織上の生体分子の分布を可視化する
2008/11
小西 慶幸, 瀬藤 光利
化学と工業 = Chemistry & chemical industry
61/ 11, 1041-1043
00227684
URL
東京 : 日本化学会
40
Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN
2006
Stegmuller J, Konishi Y, Huynh MA, Yuan Z, Dibacco S, Bonni A
Neuron
50, 389-400
41
Six1 and Six4 promote survival of sensory neurons during early trigeminal gangliogenesis
2006
Konishi Y, Ikeda K, Iwakura Y, Kawakami K
Brain Res.
1116, 93-102
42
脳神経節形成におけるSix1,Six4の機能解析(平成17年度自治医科大学医学部研究奨励金研究成果報告)
2006/12/01
小西 慶幸
自治医科大学紀要
29, 259
1881252X
URL
自治医科大学
当研究室では器官発生における転写因子Sixの役割を解析してきた。Six1とSix4は発生初期において脳神経節内の感覚神経細胞に豊富に発現する。これまでの解析から,脳神経節のうち三叉神経節において,Six1またはSix4単独の欠損では顕著な異常が見られないのに対し,Six1,Six4二重欠損マウスの神経節においては神経細胞が著しく減少することが明らかになった。Bc1-xは神経細胞の生存維持に特に重要な因子である。免疫組織染色により,Six1,Six4二重欠損マウスの三叉神経節においてBcl-xの発現が減少することが観察された。この研究により,分化初期の感覚神経細胞の生存維持に関わる機構について新たな知見が得られたと考えられる。
43
Phosphorylation of BAD at Ser-128 during mitosis and paclitaxel-induced apoptosis
2005
Berndtsson M, Konishi Y, Bonni A, Hagg M, Shoshan M, Linder S, Havelka AM
FEBS Lett.
579, 3090-3094
機関リポジトリ
44
A CAMKII-NeuroD signaling pathway regulates dendritic morphogenesis
2004
Gaudilliere B, Konishi Y, de la Iglesia N, Yao G, Bonni A
Neuron
41, 229-241
45
Cdh1-APC controls axonal growth and patterning in the mammalian brain
2004
Konishi Y, Stegmuller J, Matsuda T, Bonni S, Bonni A
Science
303, 1026-1030
機関リポジトリ
46
The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons
2003
Konishi Y, Bonni A
J Neurosci.
23, 1649-1658
47
Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern
2003
Shalizi A, Lehtinen M, Gaudilliere B, Donovan N, Han J, Konishi Y, Bonni A
J Neurosci.
23, 7326-7336
48
JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery
2002
Donovan N, Becker EB, Konishi Y, Bonni A
J Biol Chem.
277, 40944-40949
49
Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain
2002
Matsu-ura T, Konishi Y, Aoki T, Naranjo JR, Mikoshiba K, Tamura T
Brain Res Mol Brain Res.
109, 198-206
50
Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery
2002
Konishi Y, Lehtinen M, Donovan N, Bonni A
Mol Cell
9, 1005-1016
機関リポジトリ
51
Basic helix-loop-helix (bHLH) transcription factors in the nervous system.
2002/01/01
Konishi Y, Matsu-ura T, Mikoshiba K, Tamura T.
Curr Topics Neurochem.
3, 39-54
52
Molecular cloning and characterization of neural activity-related RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V
2001
Ohkawa N, Kokura K, Matsu-Ura T, Obinata T, Konishi Y, Tamura T
J Neurochem.
78, 75-87
53
Promoter structure and gene expression of the mouse inositol 1,4,5-trisphosphate receptor type 3 gene
2001
Tamura T, Hashimoto M, Aruga J, Konishi Y, Nakagawa M, Ohbayashi T, Shimada M, Mikoshiba K
Gene.
275, 169-176
54
Stimulation of gene expression of NeuroD-related factor in the mouse brain following pentylenetetrazol-induced seizures
2001
Konishi Y, Matsu-ura T, Mikoshiba K, Tamura T
Brain Res Mol Brain Res.
97, 129-136
55
Identification of the C-terminal activation domain of the NeuroD-related factor (NDRF)
2000
Konishi Y, Aoki T, Ohkawa N, Matsu-Ura T, Mikoshiba K, Tamura T
Nucleic Acids Res.
28, 2406-2412
機関リポジトリ
56
Activation of the mouse inositol 1,4,5-trisphosphate receptor type 1 promoter by AP-2
1999
Ohkawa N, Konishi Y, Shimada M, Makino Y, Yoshikawa S, Mikoshiba K, Tamura T
Gene
229, 42327
57
Transcriptional regulation of mouse type 1 inositol 1,4,5-trisphosphate receptor gene by NeuroD-related factor
1999
Konishi Y, Ohkawa N, Makino Y, Ohkubo H, Kageyama R, Furuichi T, Mikoshiba K, Tamura T
J Neurochem.
72, 1717-1724
58
Distribution of AP-2 subtypes in the adult mouse brain
1999
Shimada M, Konishi Y, Ohkawa N, Ohtaka-Maruyama C, Hanaoka F, Makino Y, Tamura T
Neurosci Res.
33, 275-280
59
Demonstration of an E-box and its CNS-related binding factors for transcriptional regulation of the mouse type 1 inositol 1,4,5-trisphosphate receptor gene
1997
Konishi Y, Kobayashi Y, Kishimoto T, Makino Y, Miyawaki A, Furuichi T, Okano H, Mikoshiba K, Tamura T
J Neurochem.
69, 476-484
60
Transcription initiation sites and promoter structure of the mouse type 2 inositol 1,4,5-trisphosphate receptor gene
1997
Morikawa K, Ohbayashi T, Nakagawa M, Konishi Y, Makino Y, Yamada M, Miyawaki A, Furuichi T, Mikoshiba K, Tamura T
Gene
196, 181-185
61
Analysis of Glial-Specific Gene Expression Using in Vitro Transcription Assays
1996
Tamura T, Konishi Y, Makino Y, Mikoshiba K
Methods
10, 312-319
62
Mechanisms of transcriptional regulation and neural gene expression
1996/12/01
Tamura T, Konishi Y, Makino Y, Mikoshiba K
Neurochem Int.
29/ 6, 573-581
62 件中 1 から 62 まで表示
前
1
次